Abstract

Saddle–node bifurcations have been described in a multitude of nonlinear dynamical systems modeling physical, chemical, as well as biological systems. Typically, this type of bifurcation involves the transition of a given set of fixed points from the real to the complex phase space. After the bifurcation, a saddle remnant can continue influencing the flows and generically, for non-degenerate saddle–node bifurcations, the time the flows spend in the bottleneck region of the ghost follows the inverse square root scaling law. Here we analytically derive this scaling law for a general one-dimensional, analytical, autonomous dynamical system undergoing a not necessarily non-degenerate saddle–node bifurcation, in terms of the degree of degeneracy by using complex variable techniques. We then compare the analytic calculations with a one-dimensional equation modeling the dynamics of an autocatalytic replicator. The numerical results are in agreement with the analytical solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.