Abstract

Saddle–node bifurcations have been described in a multitude of nonlinear dynamical systems modeling physical, chemical, as well as biological systems. Typically, this type of bifurcation involves the transition of a given set of fixed points from the real to the complex phase space. After the bifurcation, a saddle remnant can continue influencing the flows and generically, for non-degenerate saddle–node bifurcations, the time the flows spend in the bottleneck region of the ghost follows the inverse square root scaling law. Here we analytically derive this scaling law for a general one-dimensional, analytical, autonomous dynamical system undergoing a not necessarily non-degenerate saddle–node bifurcation, in terms of the degree of degeneracy by using complex variable techniques. We then compare the analytic calculations with a one-dimensional equation modeling the dynamics of an autocatalytic replicator. The numerical results are in agreement with the analytical solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.