Abstract

Novel carbon nanostructures, e.g., carbon nanotubes (CNTs), graphene, hierarchical porous graphitic carbon (HPGC), and ordered mesoporous carbon (CMK-3), have been significantly forwarding the progress of energy storage and conversion. Advanced electrodes or hybrid electrodes based on them are springing up one after another. To step further, a generic synthetic approach to large scale hierarchical porous graphitic carbon microbubbles (HPGCMBs) is developed by zinc powder templated organic precursor impregnation method. The facile technique features scalable (yield: once more than 200 mg), in situ heteroatom's doping (doping ratio: more than 26%) and hierarchical-pore-creating traits (pore volume: 1.01 cm(3) g(-1)). Adjustable graphitic content, doping species and amount are readily realized through varying the organic precursors. Rationally, good conductivity, fast kinetics, and abundant ion reservoirs are entirely achieved. To be applied in practice, state-of-the-art anodes for lithium-ion batteries are fabricated. Benefiting from the large specific surface area, rich heteroatoms, and hierarchical pores, the HPGCMBs electrodes exhibit excellent electrochemical properties. Besides superior storage capability of more than 1000 mAh g(-1) at 100 mA g(-1), stable cycling and excellent retention of 370 mAh g(-1) at large rate of 10 A g(-1) are achieved in the meantime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call