Abstract
For an arbitrary prime number $p$, we propose an action for bosonic $p$-adic strings in curved target spacetime, and show that the vacuum Einstein equations of the target are a consequence of worldsheet scaling symmetry of the quantum $p$-adic strings, similar to the ordinary bosonic strings case. It turns out that certain $p$-adic automorphic forms are the plane wave modes of the bosonic fields on $p$-adic strings, and that the regularized normalization of these modes on the $p$-adic worldsheet presents peculiar features which reduce part of the computations to familiar setups in quantum field theory, while also exhibiting some new features that make loop diagrams much simpler. Assuming a certain product relation, we also observe that the adelic spectrum of the bosonic string corresponds to the nontrivial zeros of the Riemann Zeta function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.