Abstract

In this paper Einstein's field equations, for static spherically symmetric perfect fluid models with a linear barotropic equation of state, are recast into a 3-dimensional regular system of ordinary differential equations on a compact state space. The system is analyzed qualitatively, using the theory of dynamical systems, and numerically. It is shown that certain special solutions play important roles as building blocks for the solution structure in general. In particular, these special solutions determine many of the features exhibited by solutions with a regular center and large central pressure. It is also shown that the present approach can be applied to more general classes of barotropic equations of state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call