Abstract

In this paper Einstein's field equations, for static spherically symmetric perfect fluid models with a linear barotropic equation of state, are recast into a 3-dimensional regular system of ordinary differential equations on a compact state space. The system is analyzed qualitatively, using the theory of dynamical systems, and numerically. It is shown that certain special solutions play important roles as building blocks for the solution structure in general. In particular, these special solutions determine many of the features exhibited by solutions with a regular center and large central pressure. It is also shown that the present approach can be applied to more general classes of barotropic equations of state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.