Abstract
We present a new numerical code, X-ECHO, for general relativistic magnetohydrodynamics (GRMHD) in dynamical spacetimes. This is aimed at studying astrophysical situations where strong gravity and magnetic fields are both supposed to play an important role, such as for the evolution of magnetized neutron stars or for the gravitational collapse of the magnetized rotating cores of massive stars, which is the astrophysical scenario believed to eventually lead to (long) GRB events. The code is based on the extension of the Eulerian conservative high-order (ECHO) scheme [Del Zanna et al., A&A 473, 11 (2007)] for GRMHD, here coupled to a novel solver for the Einstein equations in the extended conformally flat condition (XCFC). We fully exploit the 3+1 Eulerian formalism, so that all the equations are written in terms of familiar 3D vectors and tensors alone, we adopt spherical coordinates for the conformal background metric, and we consider axisymmetric spacetimes and fluid configurations. The GRMHD conservation laws are solved by means of shock-capturing methods within a finite-difference discretization, whereas, on the same numerical grid, the Einstein elliptic equations are treated by resorting to spherical harmonics decomposition and solved, for each harmonic, by inverting band diagonal matrices. As a side product, we build and make available to the community a code to produce GRMHD axisymmetric equilibria for polytropic relativistic stars in the presence of differential rotation and a purely toroidal magnetic field. This uses the same XCFC metric solver of the main code and has been named XNS. Both XNS and the full X-ECHO codes are validated through several tests of astrophysical interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.