Abstract

In this paper we report on what we believe is the first successful implementation of relativistic hydrodynamics, coupled to dynamical spacetimes, in spherical polar coordinates without symmetry assumptions. We employ a high-resolution shock-capturing scheme, which requires that the equations be cast in flux-conservative form. One example of such a form is the :Valencia" formulation, which has been adopted in numerous applications, in particular in Cartesian coordinates. Here we generalize this formulation to allow for a reference-metric approach, which provides a natural framework for calculations in curvilinear coordinates. In spherical polar coordinates, for example, it allows for an analytical treatment of the singular r and sin(\theta) terms that appear in the equations. We experiment with different versions of our generalized Valencia formulation in numerical implementations of relativistic hydrodynamics for both fixed and dynamical spacetimes. We consider a number of different tests -- non-rotating and rotating relativistic stars, as well as gravitational collapse to a black hole -- to demonstrate that our formulation provides a promising approach to performing fully relativistic astrophysics simulations in spherical polar coordinates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.