Abstract
We give a careful general relativistic and (1+3)-covariant analysis of cosmological peculiar velocities induced by matter density perturbations in the presence of a cosmological constant. In our quasi-Newtonian approach, constraint equations arise to maintain zero shear of the non-comoving fundamental worldlines which define a Newtonian-like frame, and these lead to the (1+3)-covariant dynamical equations, including a generalized Poisson-type equation. We investigate the relation between peculiar velocity and peculiar acceleration, finding the conditions under which they are aligned. In this case we find (1+3)-covariant relativistic generalizations of well-known Newtonian results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.