Abstract

We consider (2+1)-dimensional topological quantum states which possess edge states described by a chiral (1+1)-dimensional conformal field theory, such as, e.g., a general quantum Hall state. We demonstrate that for such states the reduced density matrix of a finite spatial region of the gapped topological state is a thermal density matrix of the chiral edge state conformal field theory which would appear at the spatial boundary of that region. We obtain this result by applying a physical instantaneous cut to the gapped system and by viewing the cutting process as a sudden "quantum quench" into a conformal field theory, using the tools of boundary conformal field theory. We thus provide a demonstration of the observation made by Li and Haldane about the relationship between the entanglement spectrum and the spectrum of a physical edge state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call