Abstract

Abstract A direct sequential method has been developed to simulate isothermal compositional systems. The solution technique is the same as that of the implicit pressure, explicit saturation (IMPES) method: one pressure is treated implicitly and (instead of the phase saturation) the component masses/moles are treated explicitly. A "volume balance" equation is used to obtain the pressure equation. A weighted sum of the conservation equations is used to eliminate the nonlinear saturation/concentration terms from the accumulation term of the pressure equation. The partial mass/mole volumes are used as "constants" to weight the mass/mole conservation equations. The method handles uniformly a range of cases from the simplified compositional (i.e., black-oil) models to the most complicated multiphase compositional models of incompressible and compressible fluid systems. The numerical solution is based on the integrated finite-difference method that allows one- (ID), two- (2D), and three-dimensional (3D) grids of regular or irregular volume elements to be handled with the same ease. The mathematical model makes it possible to develop modular versatile computer realizations; thus the model is highly suitable as a basis for general-purpose models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call