Abstract

Under the quasistatic approximation, the characteristics of a local plasmon resonance of a metal nanostructure exhibit several general properties. The resonance frequency depends on the fraction of plasmon energy residing in the metal through the real dielectric function of the metal. For a given resonant frequency, the Q factor of the resonance is determined only by the complex dielectric function of the metal material, independent of the nanostructure form or the dielectric environment. A simple result describing the effect of optical gain on the Q factor is also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.