Abstract

The forthcoming European Union (EU) Fertilizing Products Regulation1 proposes a claim-based definition of plant biostimulants, stipulating that “plant biostimulant” means a product stimulating plant nutrition processes independently of the product’s nutrient content, with the aim of improving one or more of the following characteristics of the plant: nutrient use efficiency, tolerance to abiotic stress, crop quality traits or availability of confined nutrients in the soil and rhizosphere. The future regulation also specifies that a plant biostimulant “shall have the effects that are claimed on the label for the plants specified thereon.” This creates an onus for manufacturers to demonstrate to regulators and customers that product claims are justified. Consequently, the justification of the agronomic claim of a given plant biostimulant will be an important element to allow it to be placed on the EU market once this new European regulation is applied. In this article, members of the European Biostimulant Industry Council (EBIC) propose some general guiding principles to follow when justifying plant biostimulant claims, that are outlined in this article. These principles are expected to be incorporated into harmonized European standards that are being developed by the European Committee for Standardization (CEN) to support the implementation of the regulation.

Highlights

  • The forthcoming European Union (EU) regulation for fertilizing products covers six types of products as well as combinations of them

  • The definition used for plant biostimulants is claims-based (European Commission, 2016; Council of the European Union, 2018), meaning that it is the function of the product, not what it contains that defines it as a plant biostimulant

  • This should not be confused with guaranteeing a specific level of efficacy

Read more

Summary

Introduction

The forthcoming EU regulation for fertilizing products covers six types of products (fertilizers, liming materials, soil improvers, growing media, inhibitors, and plant biostimulants) as well as combinations of them. It is precisely the synergistic effects among different types of biostimulants (microbial/non-microbial, substances of different origins, etc.) allow manufacturers to design and develop efficient plant biostimulant products with specific properties in terms of yield and especially nutritional and functional quality (Krouk, 2015; Rouphael and Colla, 2018).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call