Abstract

(1) Introduction and Survey. The method for studying the structure and evolution of the solar system is discussed. It is pointed out that theories that account for the origin of planets alone are basically insufficient. Instead one ought to aim for a general theory for the formation of secondary bodies around a central body, applicable both to planet and satellite formation. A satisfactory theory should not start from assumed properties of the primitive Sun, which is a very speculative subject, but should be based on an analysis of present conditions and a successive reconstruction of the past states. (2) Orbits of Planets and Satellites. As a foundation for the subsequent analysis, the relevant properties of planets and satellites are presented. (3) The Small Bodies. The motion of small bodies is influenced by non-gravitational forces. Collisions (viscosity) are of special importance for the evolution of the orbits. It is pointed out that the focusing property of a gravitational field (which has usually been neglected) leads to the formation of jet streams. The importance of this concept for the understanding of the comet-meteoroid relations and the structure of the asteroidal belt is shown. (4) Resonance Structure. A survey is given of the resonances in the solar system and their possible explanation. It is concluded that in many cases the resonances must already be produced at the times when the bodies formed. It is shown that resonance effects put narrow limits on the postaccretional changes of orbits. (5) Spin and Tides. Tidal effects on planetary spins and satellite orbits are discussed. It is very doubtful if any satellite except the Moon and possibly Triton has had its orbit changed appreciably by tidal effects. The isochronism of planetary and asteroidal spins is discussed, as well as its bearing on the accretional process. (6) Post-accretional Changes in the Solar System. The stability of the solar system and upper limits for changes in orbital and spin data are examined. It is concluded that much of the present dynamic structure has direct relevance to the primordial processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call