Abstract
Methods for life cycle assessment of products (LCA) are most often based on the general prevention principle, as opposed to the risk minimization principle. Here, the desirability and feasibility of a combined approach are discussed, along with the conditions for elaboration in the framework of LCA methodology, and the consequences for LCA practice. A combined approach provides a separate assessment of above and below threshold pollution, offering the possibility to combat above threshold impacts with priority. Spatial differentiation in fate, exposure, and effect modelling is identified to play a central role in the implementation. The collection of region-specific data turns out to be the most elaborate requirement for the implementation in both methodology and practice. A methodological framework for the construction of characterization factors is provided. Along with spatial differentiation of existing parameters, two newly introduced spatial parameters play a key role: the sensitivity factor and the threshold factor. The practicability of the proposed procedure is illustrated by an example of its application. Providing a reasonable data availability, the development of separate LCA characterization factors for the respective assessment of pollution levels above and below environmental threshold values seems to be a feasible task that may add to LCA credibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.