Abstract

A job exposure matrix may be useful for the study of biomechanical workplace risk factors when individual-level exposure data are unavailable. We used job title-based exposure data from a public data source to construct a job exposure matrix and test exposure-response relationships with prevalent carpal tunnel syndrome (CTS). Exposures of repetitive motion and force from the Occupational Information Network were assigned to 3,452 active workers from several industries, enrolled between 2001 and 2008 from 6 studies. Repetitive motion and force exposures were combined into high/high, high/low, and low/low exposure groupings in each of 4 multivariable logistic regression models, adjusted for personal factors. Although force measures alone were not independent predictors of CTS in these data, strong associations between combined physical exposures of force and repetition and CTS were observed in all models. Consistent with previous literature, this report shows that workers with high force/high repetition jobs had the highest prevalence of CTS (odds ratio = 2.14-2.95) followed by intermediate values (odds ratio = 1.09-2.27) in mixed exposed jobs relative to the lowest exposed workers. This study supports the use of a general population job exposure matrix to estimate workplace physical exposures in epidemiologic studies of musculoskeletal disorders when measures of individual exposures are unavailable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.