Abstract

We present a unified approach to the theory of multimodal laser cavities including a variable amount of structural disorder. A general mean-field theory is studied for waves in media with variable nonlinearity and randomness. Phase diagrams are reported in terms of optical power, degree of disorder, and degree of nonlinearity, tuning between closed and open cavity scenarios. In the thermodynamic limit of infinitely many modes, the theory predicts four distinct regimes: a continuous wave behavior for low power, a standard mode-locking laser regime for high power and weak disorder, a random laser for high pumped power and large disorder, and a novel intermediate regime of phase locking occurring in the presence of disorder but below the lasing threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.