Abstract

This paper deals with the analysis of the time-fractional diffusion-wave equation as one-dimensional problem in a large plane wall, long cylinder, and sphere. The result of the analysis is the proposal of one general mathematical model that describes various geometries and different processes. Finite difference method for solving the time-fractional diffusion-wave equation using Grünwald-Letnikov definition for homogeneous or inhomogeneous material and for homogeneous or inhomogeneous boundary conditions is described. Dirichlet, Neumann and Robin boundary conditions are considered. Implementation of numerical methods for explicit, implicit, and Crank-Nicolson scheme were realised in MATLAB. Finally, illustrative examples of simulations using the developed toolbox are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.