Abstract
In this paper, we study the monogamy inequality of Tsallis-q entropy entanglement. We first provide an analytic formula of Tsallis-q entropy entanglement in two-qubit systems for $\frac{5-\sqrt{13}}{2}\leq q\leq\frac{5+\sqrt{13}}{2}.$ The analytic formula of Tsallis-q entropy entanglement in $2\otimes d$ system is also obtained and we show that Tsallis-q entropy entanglement satisfies a set of hierarchical monogamy equalities. Furthermore, we prove the squared Tsallis-q entropy entanglement follows a general inequality in the qubit systems. Based on the monogamy relations, a set of multipartite entanglement indicators is constructed, which can detect all genuine multiqubit entangled states even in the case of $N$-tangle vanishes. Moreover, we study some examples in multipartite higher-dimensional system for the monogamy inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.