Abstract

The recently developed multireference, general-model-space, state-universal coupled-cluster approach considering singles and doubles (GMS SU CCSD) has been extended to account perturbatively for triples, similar to the ubiquitous single-reference CCSD(T) method. The effectiveness of this extension in handling of excited states and its ability to account for the static and nondynamic correlation effects when considering spin- and/or space-symmetry degenerate levels within the spin-orbital formalism is examined on the example of low-lying excitation energies of the C2, N2, and CO molecules and a comparison is made with the (N,N)-CCSD method used for the same purpose. It is shown that while the triple corrections are very effective in improving the absolute energies, they have only a modest effect on the corresponding excitation energies, which may be even detrimental if both the ground- and excited-state levels cannot be given a balanced treatment. While the triple corrections help to avoid the symmetry-breaking effects arising due to the use of the spin-orbital formalism, they are much less effective in this regard than the (N,N)-CCSD approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.