Abstract
This paper considers the problem of estimating a periodic function in a continuous time regression model with an additive stationary Gaussian noise having unknown correlation function. A general model selection procedure on the basis of arbitrary projective estimates, which does not need the knowledge of the noise correlation function, is proposed. A non-asymptotic upper bound for $${\mathcal{L}_2}$$ -risk (oracle inequality) has been derived under mild conditions on the noise. For the Ornstein–Uhlenbeck noise the risk upper bound is shown to be uniform in the nuisance parameter. In the case of Gaussian white noise the constructed procedure has some advantages as compared with the procedure based on the least squares estimates (LSE). The asymptotic minimaxity of the estimates has been proved. The proposed model selection scheme is extended also to the estimation problem based on the discrete data applicably to the situation when high frequency sampling can not be provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.