Abstract

Due to the nonlinear behavior of grid-connected cascaded multilevel inverters (GCCMI), the use of nonlinear controllers can guarantee system stability over a wide range of operation. Therefore, state-space modeling is required to design nonlinear controllers. In this manuscript, a comprehensive method is proposed for the general state-space modeling of an n-level GCCMI with LCL coupling. To validate the accuracy of obtained state-space model, an experimental setup of a cascaded multilevel inverter including two H-bridges has been implemented. The outputs of the state-space model are compared with the simulation and experimental results of the GCCMI. This shows that the proposed model is compatible with a real closed-loop system. The simulations were performed using EMTDC/PSCAD software. In the following, the designed general model is used to develop a nonlinear controller based on the Lyapunov stability criteria for a multilevel shunt active power filter (SAPF). Results show that the designed controller is stable and robust in a wide range of operating point changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.