Abstract

The accurate measurement of aircraft mass properties, such as the mass, centroid, and moment of inertia (MOI), plays a key role in the precise control of aircraft. In order to obtain high-precision information on the parameters of the mass, centroid, and MOI of an aircraft using a single instrument, an integrated mass property measurement system was developed in this study by analyzing and comparing the latest technologies, especially the function-switching device, which switches the measurement states between the center of mass and the MOI. The purpose of mass property measurement was achieved through single clamping. In addition, the system has strong versatility and expansion and can be used with different tooling or adapter rings to measure the mass properties of aircraft with different shapes. In this paper, the main mechanical structure of the measurement system, the measurement method of relevant mass parameters, and the solution method of the transformation matrix are introduced, and the standard parts and the aircraft were verified experimentally. The test results showed that the mass measurement accuracy was 0.03%, the centroid measurement error was within ±0.2 mm, and the measurement accuracy of the MOI was within 0.2%, all of which meet the high-precision measurement requirements for the mass properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call