Abstract
We study the fine-grained complexity of NP-complete, infinite-domain constraint satisfaction problems (CSPs) parameterised by a set of first-order definable relations (with equality). Such CSPs are of central importance since they form a subclass of any infinite-domain CSP parameterised by a set of first-order definable relations over a relational structure (possibly containing more than just equality). We prove that under the randomised exponential-time hypothesis it is not possible to find c > 1 such that a CSP over an arbitrary finite equality language is solvable in O(c^n) time (n is the number of variables). Stronger lower bounds are possible for infinite equality languages where we rule out the existence of 2^{o(n log n)} time algorithms; a lower bound which also extends to satisfiability modulo theories solving for an arbitrary background theory. Despite these lower bounds we prove that for each c > 1 there exists an NP-hard equality CSP solvable in O(c^n) time. Lower bounds like these immediately ask for closely matching upper bounds, and we prove that a CSP over a finite equality language is always solvable in O(c^n) time for a fixed c, and manage to extend this algorithm to the much broader class of CSPs where constraints are formed by first-order formulas over a unary structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.