Abstract

The equations of particle motion in an elastic isotropic stressed medium are first derived in Cartesian coordinates and then transformed into cylindrical coordinates. The three components of the equations of motion are non-linear partial differential equations and cannot be of use in practical applications. However, noting that the particle displacement is composed of a small dynamic part superimposed on a large static part, these equations are linearized via a simple perturbation method. The linearized equations are presented in closed form. They contain variables, which may be measured and experimented upon in practice, in the field of acoustoelasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.