Abstract

Long-range interacting N-particle systems get trapped into long-living out-of-equilibrium stationary states called quasi-stationary states (QSS). We study here the response to a small external perturbation when such systems are settled into a QSS. In the N → ∞ limit the system is described by the Vlasov equation and QSS are mapped into stable stationary solutions of such equation. We consider this problem in the context of a model that has recently attracted considerable attention, the Hamiltonian mean field (HMF) model. For such a model, stationary inhomogeneous and homogeneous states determine an integrable dynamics in the mean-field effective potential and an action-angle transformation allows one to derive an exact linear response formula. However, such a result would be of limited interest if restricted to the integrable case. In this paper, we show how to derive a general linear response formula which does not use integrability as a requirement. The presence of conservation laws (mass, energy, momentum, etc.) and of further Casimir invariants can be imposed a posteriori. We perform an analysis of the infinite time asymptotics of the response formula for a specific observable, the magnetization in the HMF model, as a result of the application of an external magnetic field, for two stationary stable distributions: the Boltzmann-Gibbs equilibrium distribution and the Fermi-Dirac one. When compared with numerical simulations the predictions of the theory are very good away from the transition energy from inhomogeneous to homogeneous states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call