Abstract

The exponential partial Bell polynomials are polynomials in an infinite number of variables x 1 , x 2 , … , and it is well-known that some special combinatorial sequences, e.g., Stirling numbers of both kinds, Lah numbers and idempotent numbers, can be obtained from the Bell polynomials. In this paper, we study these polynomials by making appropriate choices of the variables x 1 , x 2 , … which are related to associated sequences (binomial sequences) and Sheffer sequences. As a consequence, many general identities on Bell polynomials are proposed. From these general identities, we can obtain series of identities on Bell polynomials. It can also be found that many results presented before are special cases of the general identities of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.