Abstract

Surface manufacturing is a process of adding material to or removing material from the surfaces of a part. Spray painting, spray forming, rapid tooling, spray coating, and polishing are some of the typical applications of surface manufacturing, where industrial robots are usually used. Tool planning for industrial robots in surface manufacturing is a challenging research topic. Typical teaching methods are not affordable any more because products are subject to a shorter product life, frequent design changes, small lot sizes, and small in-process inventory restrictions. An automatic tool trajectory planning process is hence desirable for tool trajectory planning of industrial robots. Based on the computer-aided design model of a part, the tool model, task constraints, and optimization criteria, a general framework of optimal tool trajectory planning in surface manufacturing is developed. Optimal tool trajectories are generated by approximately solving a multiobjective optimization problem. To test if the generated trajectory satisfies the given constraints, a trajectory verification model is developed. Simulations are performed to determine if the given constraints are satisfied. Simulation results show that the optimal tool trajectory planning framework can be applied to generate trajectories for a variety of applications in surface manufacturing. This general framework can also be extended to other applications such as dimensional inspection and demining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.