Abstract

This paper proposes a new decision-making framework in the context of Human-Robot Collaboration (HRC). State-of-the-art techniques consider the HRC as an optimization problem in which the utility function, also called reward function, is defined to accomplish the task regardless of how well the interaction is performed. When the performance metrics are considered, they cannot be easily changed within the same framework. In contrast, our decision-making framework can easily handle the change of the performance metrics from one case scenario to another. Our method treats HRC as a constrained optimization problem where the utility function is split into two main parts. Firstly, a constraint defines how to accomplish the task. Secondly, a reward evaluates the performance of the collaboration, which is the only part that is modified when changing the performance metrics. It gives control over the way the interaction unfolds, and it also guarantees the adaptation of the robot actions to the human ones in real-time. In this paper, the decision-making process is based on Nash Equilibrium and perfect-information extensive form from game theory. It can deal with collaborative interactions considering different performance metrics such as optimizing the time to complete the task, considering the probability of human errors, etc. Simulations and a real experimental study on “an assembly task” -i.e., a game based on a construction kit-illustrate the effectiveness of the proposed framework.

Highlights

  • Nowadays, Human-Robot Collaboration (HRC) is a fast-growing sector in the robotics domain

  • We present in the Supplementary Material a more detailed table that introduces more performance metrics and defines each metric according to its usage in different task types

  • 5.4.4 Simulation Results We illustrate the efficiency of our utility function C3 by showing the improvement in time to completion and the reduction of the number of human errors obtained while solving the puzzles

Read more

Summary

Introduction

Human-Robot Collaboration (HRC) is a fast-growing sector in the robotics domain. HRC aims to make everyday human tasks easier. It is a challenging research field that interacts with many others: psychology, cognitive science, sociology, artificial intelligence, and computer science (Seel, 2012). HRC is based on the exchange of information between humans and robots sharing a common environment to achieve a task as teammates with a common goal (Ajoudani et al, 2018). HRC applications can have social and/or physical benefits for humans (Bütepage and Kragic, 2017). Social collaboration tasks include social, emotional and cognitive aspects

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.