Abstract

In order to derive the equivalent partial differential equations of a lattice Boltzmann scheme, the Chapman Enskog expansion is very popular in the lattice Boltzmann community. A main drawback of this approach is the fact that multiscale expansions are used without any clear mathematical signification of the various variables and operators. Independently of this framework, the Taylor expansion method allows to obtain formally the equivalent partial differential equations. The general equivalency of these two approaches remains an open question. In this contribution, we prove that both approaches give identical results with acoustic scaling for a very general family of lattice Boltzmann schemes and up to fourth-order accuracy. Examples with a single scalar conservation illustrate our purpose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.