Abstract

We present a general mesh-free description of the magnetic field distribution in various electromagnetic machines, actuators, and devices. Our method is based on transfer relations and Fourier theory, which gives the magnetic field solution for a wide class of two-dimensional (2-D) boundary value problems. This technique can be applied to rotary, linear, and tubular permanent-magnet actuators, either with a slotless or slotted armature. In addition to permanent-magnet machines, this technique can be applied to any 2-D geometry with the restriction that the geometry should consist of rectangular regions. The method obtains the electromagnetic field distribution by solving the Laplace and Poisson equations for every region, together with a set of boundary conditions. Here, we compare the method with finite-element analyses for various examples and show its applicability to a wide class of geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.