Abstract

The development of bifunctional electrocatalysts for overall water splitting in acidic media is vital for polymer electrolyte membrane (PEM) electrolyzers, but still full of obstacles. Here, highly efficient acidic overall water splitting is realized by utilizing ultrasmall, monodispersed Iridium (Ir)‐based nanoclusters (NCs) as the candidate, via a surfactant‐free, wet‐chemical, and large‐scalable strategy. Benefiting from the high specific surface area, clean surface, and strong binding between NCs and supports, the IrM NCs exhibit attractive activities and durability for both oxygen evolution reaction and hydrogen evolution reaction in acidic electrolytes, with IrNi NCs showing the best performance. More significantly, in the overall water splitting, IrNi NCs reach 10 mA cm−2 at a cell voltage of only 1.58 V in 0.5 m H2SO4 electrolyte, holding promises for potential implementation of PEM water electrolysis. This work opens a new avenue toward designing bifunctional “acidic stable” catalysts for efficient overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call