Abstract

Phase equilibrium calculations with cubic equations of state are sensitive to mixing and combining rules employed. In this work, we present a suitable general form of the combining rule for the cross-energy parameter, often considered to be the key property in phase equilibrium calculations. The proposed rule is derived from molecular considerations, namely, the London−Mie theory. The typically used geometric mean (GM) and other combining rules can be deducted from this expression from different values of the parameter n, which is the attractive tail of the Mie potential. We show that using this n parameter as the variable instead of the commonly employed kij offers useful insight into the behavior of cubic equations of state for a large number of asymmetric systems including gas/alkanes, polymer solutions and blends, and alcohol/alkane and gas/solid systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.