Abstract
Financial market models defined by a liquidation value process generalize the conic models of Schachermayer and Kabanov where the transaction costs are proportional to the exchanged volumes of traded assets. The solvency set of all portfolio positions that can be liquidated without any debt is not necessary convex, e.g. in presence of proportional transaction costs and fixed costs. Therefore, the classical duality principle based on the Hahn–Banach separation theorem is not appropriate to characterize the prices super hedging a contingent claim. Using an alternative method based on the concepts of essential supremum and maximum, we provide a characterization of European and American contingent claim prices under the absence of arbitrage opportunity of the second kind.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stochastics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.