Abstract

A general field theory for classical particle-field systems is developed. Compared to the standard classical field theory, the distinguishing feature of a classical particle-field system is that the particles and fields reside on different manifolds. The fields are defined on the 4D space-time, whereas each particle's trajectory is defined on the 1D time-axis. As a consequence, the standard Noether's procedure for deriving local conservation laws in space-time from symmetries is not applicable without modification. To overcome this difficulty, a weak Euler-Lagrange equation for particles is developed on the 4D space-time, which plays a pivotal role in establishing the connections between symmetries and local conservation laws in space-time. Specifically, the nonvanishing Euler derivative in the weak Euler-Lagrange equation generates a new current in the conservation laws. Several examples from plasma physics are studied as special cases of the general field theory. In particular, the relations between the rotational symmetry and angular momentum conservation for the Klimontovich-Poisson system and the Klimontovich-Darwin system are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.