Abstract
We study a proportional reduction in loss (PRL) measure for the reliability of categorical data and consider the general case in which each ofN judges assigns a subject to one ofK categories. This measure has been shown to be equivalent to a measure proposed by Perreault and Leigh for a special case when there are two equally competent judges, and the correct category has a uniform prior distribution. We consider a general framework where the correct category is assumed to have an arbitrary prior distribution, and where classification probabilities vary by correct category, judge, and category of classification. In this setting, we consider PRL reliability measures based on two estimators of the correct category—the empirical Bayes estimator and an estimator based on the judges' consensus choice. We also discuss four important special cases of the general model and study several types of lower bounds for PRL reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.