Abstract
Capacitive analogues of semiconductor diodes (CAPodes) present a new avenue for energy-efficient and nature-inspired next-generation computing devices. Here, we disclose the generalized concept for bias-direction-adjustable n- and p-CAPodes based on selective ion sieving. Controllable-unidirectional ion flux is realized by blocking electrolyte ions from entering sub-nanometer pores. The resulting CAPodes exhibit charge-storage characteristics with a high rectification ratio (96.29 %). The enhancement of capacitance is attributed to the high surface area and porosity of an omnisorbing carbon as counter electrode. Furthermore, we demonstrate the use of an integrated device in a logic gate circuit architecture to implement logic operations ('OR', 'AND'). This work demonstrates CAPodes as a generalized concept to achieve p-n and n-p analogue junctions based on selective ion electrosorption, provides a comprehensive understanding and highlights applications of ion-based diodes in ionologic architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.