Abstract
The selective C-H/C-C bond scission in CO2-assisted alkane activation represents an opportunity for simultaneously upgrading greenhouse gas CO2 and light alkanes for the synthesis of value-added syngas (CO and H2), olefins, aromatics, and oxygenates. Here, Pd bimetallic (PdMx)-derived catalysts were investigated for ethane-CO2 reactions by combining kinetic analysis, in situ characterization, and density functional theory calculations. Two types of catalyst structures were identified under the reaction conditions, with the PdCox alloy surface favoring ethoxy formation, a critical precursor for further C-C bond scission, and the reaction-induced InOx/Pd interface promoting C-H bond scission. Our results revealed a general strategy to capture the reaction-induced surface configurations and in turn control the selectivity in C-C/C-H bond scission over PdMx-derived catalysts, featuring the interplay of two general descriptors: formation energy of PdMx surfaces and their binding energy to oxygen. Our study provides insight into the rational design of selective catalysts for light alkane-CO2 reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.