Abstract

The Schmidt decomposition is an important tool in the study of quantum systems especially for the quantification of the entanglement of pure states. However, the Schmidt decomposition is only unique for bipartite pure states, and some multipartite pure states. Here a generalized Schmidt decomposition is given for states which are equivalent to depolarized pure states. Experimental methods for the identification of this class of mixed states are provided and some examples are discussed which show the utility of this description. A particularly interesting example provides, for the first time, an interpretation of the number of negative eigenvalues of the density matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.