Abstract

We present a new formula and implementation for a descriptor enabling quantification of the electron-hole distance associated with a charge transfer of an optical transition, on the basis of the knowledge of the densities of the electronic ground and excited states. This index is able to define a charge-transfer length even for systems that would be otherwise difficult to treat, like symmetric molecules, while maintaining a very low computational cost and the possibility to be coupled to any method providing ground and excited state electron densities. After a benchmark of its performance on a series of push-pull molecules, the index has been applied to a set of large symmetric luminophores, the so-called "butterfly molecules", showing promising applications in optoelectronics, to highlight its potential use in the design of new compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.