Abstract
In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form $$\begin{array}{llll}u_{tt}(t)-\Delta u(t)+\displaystyle\int\limits_{0}^{t}g(t-s)\Delta u(s){\rm d}s=a\left\vert u\right\vert^{p-1}u,\quad{\rm in}\,\Omega\times(0,\infty), \\ \qquad\qquad\qquad\qquad\qquad u=0,\,{\rm on}\,\Gamma_{0} \times(0,\infty),\\ \dfrac{\partial u}{\partial\nu}-\displaystyle\int\limits_{0}^{t}g(t-s)\frac{\partial}{\partial\nu}u(s){\rm d}s+h(u_{t})=b\left\vert u\right\vert ^{k-1}u,\quad{\rm on} \ \Gamma_{1} \times(0,\infty) \\ \qquad\qquad\qquad\qquad u(0)=u^{0},u_{t}(0)=u^{1},\quad x\in\Omega, \end{array}$$ is considered in a bounded domain Ω. Under appropriate assumptions imposed on the source and the damping, we establish both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite time blow-up phenomenon is exhibited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.