Abstract
Using general identities for difference operators, as well as a technique of symbolic computation and tools from probability theory, we derive very general kth order (k≥2) convolution identities for Bernoulli and Euler polynomials. This is achieved by use of an elementary result on uniformly distributed random variables. These identities depend on k positive real parameters, and as special cases we obtain numerous known and new identities for these polynomials. In particular we show that the well-known identities of Miki and Matiyasevich for Bernoulli numbers are special cases of the same general formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.