Abstract
We study the statistical mechanics of classical Coulomb systems in a low coupling regime (Debye-Huckel regime) in a confined geometry with Dirichlet boundary conditions. We use a method recently developed by the authors which relates the grand partition function of a Coulomb system in a confined geometry with a certain regularization of the determinant of the Laplacian on that geometry with Dirichlet boundary conditions. We study several examples of confining geometry in two and three dimensions and semi-confined geometries where the system is confined only in one or two directions of the space. We also generalize the method to study systems confined in arbitrary geometries with smooth boundary. We find a relation between the expansion for small argument of the heat kernel of the Laplacian and the large-size expansion of the grand potential of the Coulomb system. This allow us to find the finite-size expansion of the grand potential of the system in general. We recover known results for the bulk grand potential (in two and three dimensions) and the surface tension (for two dimensional systems). We find the surface tension for three dimensional systems. For two dimensional systems our general calculation of the finite-size expansion gives a proof of the existence a universal logarithmic finite-size correction predicted some time ago, at least in the low coupling regime. For three dimensional systems we obtain a prediction for the perimeter correction to the grand potential of a confined system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.