Abstract

ABSTRACTThe morphology and composition both chemical and radionuclide of the main types of the solid-phase “hot” particles formed following the accident on the Chernobyl NPP have been studied by SEM, electron microprobe and gamma-spectrometry methods. Differences in many isotopes including: 106Ru, 134Cs, 137Cs dependent upon the hot particle matrix chemical composition was observed. The classification of hot particles based upon the chemical composition of their matrices has been done. It includes three main types: 1) fuel particles with UOx matrix; 2) fuel-constructional particles with Zr-U-0 matrix, 3) hot particles with metallic inclusions of Fe-Cr-Ni. Moreover, there are more rare types of hot particles with silicate or metal matrices. It was shown that only metallic inclusions of Fe-Cr-Ni are concentrators of 106Ru, which caused this nuclides assimilation in the molten stainless steel during the initial stages of the accident. Soils contamination of non-radioactive lead oxide particles in the Chernobyl NPP region were noticed. It was supposed that part of metallic lead, dropped from helicopters into burning reactor during first days of accident, was evaporated and oxidized accompanying solid oxide particles formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.