Abstract
All unitary perturbations of a given unitary operator $U$ by finite rank $d$ operators with fixed range can be parametrized by $(d\times d)$ unitary matrices $\Gamma$; this generalizes unitary rank one ($d=1$) perturbations, where the Aleksandrov--Clark family of unitary perturbations is parametrized by the scalars on the unit circle $\mathbb{T}\subset\mathbb{C}$. For a purely contractive $\Gamma$ the resulting perturbed operator $T_\Gamma$ is a contraction (a completely non-unitary contraction under the natural assumption about cyclicity of the range), so they admit the functional model. In this paper we investigate the Clark operator, i.e. a unitary operator that intertwines $T_\Gamma$ (presented in the spectral representation of the non-perturbed operator $U$) and its model. We make no assumptions on the spectral type of the unitary operator $U$; absolutely continuous spectrum may be present. We find a representation of the adjoint Clark operator in the coordinate free Nikolski--Vasyunin functional model. This representation features a special version of the vector-valued Cauchy integral operator. Regularization of this singular integral operator yield representations of the adjoint Clark operator in the Sz.-Nagy--Foias transcription. In the special case of inner characteristic functions (purely singular spectral measure of $U$) this representation gives what can be considered as a natural generalization of the normalized Cauchy transform (which is a prominent object in the Clark theory for rank one case) to the vector-valued settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.