Abstract

Stiffness-gradient-induced cellular taxis, so-called durotaxis, has been extensively studied on a substrate with a single broad or steep stiffness gradient. However, in actual living tissues, cells should sense cell-scaled heterogeneous elasticity distribution in the extracellular matrix. In this study, to clarify the effect of the cell-scale heterogeneity of matrix-elasticity on durotaxis, we examined the motility of different types of cells on microelastically-striped patterned gels with different cell-sized widths. We found that cells accumulated in stiff regions with specific width on cell-type-dependency, even when a stiffness gradient is too small to induce usual durotaxis with a monotonic stiffness gradient. Fibroblast cells accumulated in a wide stiff region of multicellular size, while mesenchymal stem cells localized in a narrow stiff region of single-cell size. It was revealed that durotactic activity is critically affected not only with the cell type but also with the cell-scale heterogeneity of matrix-elasticity. Based on the shape-fluctuation-based analysis of cell migration, the dynamics of the pseudopodia were found to play a key role in determining the behaviors of general durotaxis. Our results suggest that design of cell-scale heterogeneity of matrix-elasticity is pivotal in controlling directional cell migration, the spontaneous cell-patterning, and development of the tissue on the biomaterials surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.