Abstract
The aim of this paper was to complete some aspects of the classical Cauchy–Lipschitz (or Picard–Lindelöf) theory for general nonlinear systems posed on time scales. Despite a rich literature on Cauchy–Lipschitz type results on time scales, most of the existing results are concerned with rd-continuous dynamics (and -solutions) and do not cover the framework of general Carathéodory dynamics encountered for instance in control theory with measurable controls (which are not rd-continuous in general). In this paper, our main objective was to study -Cauchy problems with general Carathéodory dynamics. We introduce the notion of absolutely continuous solution (weaker regularity than ) and then the notion of maximal solution. We state and prove a Cauchy–Lipschitz theorem, providing existence and uniqueness of the maximal solution of a given -Cauchy problem under suitable assumptions such as regressivity and local Lipschitz continuity. Three new related issues are also discussed in this paper: the boundary value is not necessarily an initial or a final condition, the solutions are constrained to take their values in a non-empty open subset and the behaviour of maximal solutions at terminal points is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Difference Equations and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.