Abstract

Aircraft identification in airport operations is critical to various applications, including airport planning and environmental studies. Previous research and commercially available systems heavily rely on recognizing aircraft tail numbers using text recognition. However, this approach alone does not provide accurate results in situations when the tail number visibility is reduced or obstructed. Furthermore, general aviation aircraft are harder to identify because they are small in size, and their tail numbers include substantial variations in fonts, sizes, and orientations. To tackle these issues, we propose a two-step computer vision-based aircraft identification method, first identifying the aircraft type and then recognizing the tail number in a probabilistic multi-frame-based (MFB) framework. In the first step, a convolutional neural network (CNN)-based aircraft classifier is customized to decrease the search space in the registration database. In the second step, the identification process is finalized by integrating the text recognition results into the designed probabilistic MFB framework. The proposed method achieves approximately 90% identification accuracy when tested on video data collected from three general aviation airports. This is a significant improvement compared to text recognition alone, which recognizes 67% of the individual tail number characters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.