Abstract
A general class of C3 -symmetric Ag9 clusters, [Ag9 S(tBuC6 H4 S)6 (dpph)3 (CF3 SO3 )] (1), [Ag9 (tBuC6 H4 S)6 (dpph)3 (CF3 SO3 )2 ]⋅CF3 SO3 (2), [Ag9 (tBuC6 H4 S)6 (dpph)3 (NO3 )2 ] ⋅NO3 (3), and [Ag9 (tBuC6 H4 S)7 (dpph)3 (Mo2 O7 )0.5 ]2 ⋅2 CF3 COO (4) (dpph=1,6-bis(diphenylphosphino)hexane), with a twisted trigonal-prism geometry was isolated by the reaction of polymeric {(HNEt3 )2 [Ag10 (tBuC6 H4 S)12 ]}n , 1,6-bis(diphenylphosphino)hexane, and various silver salts under solvothermal conditions. The structures consist of discrete clusters constructed from a girdling Ag9 twisted trigonal prism with the top and bottom trigonal faces capped by diverse anions (i.e., S(2-) and CF3 SO3 (-) for compound 1, 2×CF3 SO3 (-) for compound 2, 2×NO3 (-) for compound 3, and tBuC6 H4 S(-) and Mo2 O7 (2-) for compound 4). This trigonal prism is bisected by another shrunken Ag3 trigon at its waist position. Interestingly, two inversion-related Ag9 trigonal-prismatic clusters are dimerized by the Mo2 O7 (2-) ion in compound 4. The twist is amplified by the bulkier thiolate, which also introduces high steric-hindrance for the capping ligand, that is, the longer dpph ligand. Four more silver-sulfur clusters (namely, compounds 5-8) with their nuclearity ranging from 6-10 were solely characterized by single-crystal X-ray diffraction to verify the above-described synergetic effect of mixed ligands in the construction of Ag9 twisted trigonal prisms. Surprisingly, only cluster 1 emits yellow luminescence at λ=584 nm at room temperature, which may be attributed to a charge transfer from the S 3p orbital to the Ag 5s orbital, or mixed with metal-centered (MC) d(10) →d(9) s(1) transitions. Upon cooling from 300 to 80 K, the emission intensity was enhanced along with a hypsochromic shift. The good linear relationship between the maximum emission intensity and the temperature for compound 1 in the range of 180-300 K indicates that this is a promising molecular luminescent thermometer. Furthermore, cyclic voltammetric studies indicated that the diffusion- and surface-controlled redox processes were determined for compounds 1 and 3 as well as compound 4, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.