Abstract
While the complexity of min–max and min–max regret versions of most classical combinatorial optimization problems has been thoroughly investigated, there are very few studies about their approximation. For a bounded number of scenarios, we establish general approximation schemes which can be used for min–max and min–max regret versions of some polynomial or pseudo-polynomial problems. Applying these schemes to shortest path, minimum spanning tree, minimum weighted perfect matching on planar graphs, and knapsack problems, we obtain fully polynomial-time approximation schemes with better running times than the ones previously presented in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.