Abstract

3D graphene frameworks (GFs) are fast and scalably synthesized via a general and facile method from the rich biomass of sugars with the aid of molten salts, using glucose as the prototype, to obtain an effective sensing platform for sensitive nonenzymatic hydrogen peroxide (H2O2) detection. The electroactive area of the GFs/GCE (0.1437cm2) is obviously higher than that of bare GCE (0.0653cm2). The GFs are found to exhibit remarkable electrocatalytic activity toward H2O2 reduction while avoiding enzyme loading. The electrochemical sensor for H2O2 based on GFs displays a low detection limit of 0.032 ± 0.005μM (S/N = 3) at a working potential of - 0.55V in 0.01MN2-saturated phosphate-buffered saline (PBS, pH = 7.4) by an amperometric method. The sensor has good selectivity over other compounds such as ascorbic acid, dopamine, uric acid, NaCl, citric acid, and glucose. Moreover, the sensor shows excellent reproducibility with a relative standard deviation of 3.7% and acceptable stability after 30days of usage. Furthermore, it can detect H2O2 released from living tumorigenic cells in real time. Most importantly, it is demonstratedthat such GFs can be obtained from a variety of sugars (sucrose, fructose, lactose, and maltose). This work may offer a new general avenue for the synthesis of 3D GFs and promote the development of electrochemical sensors. Graphical abstract We have reported a general and fast method to synthesize GFs from sugars (glucose, sucrose, fructose, lactose, and maltose) with the addition of molten Na2CO3 salt as a template. The developed GFs can be applied as excellent electrode materials for efficient electrochemical sensing of H2O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.