Abstract

The full configuration interaction quantum Monte Carlo (FCIQMC) is a state-of-the-art stochastic electronic structure method, providing a methodology to compute FCI-level state energies of molecular systems within a quantum chemical basis. However, especially to probe dynamics at the FCIQMC level, it is necessary to devise more efficient schemes to produce nuclear forces and potential energy surfaces (PES) from FCIQMC. In this work, we derive the general formula for nuclear forces from FCIQMC, and clarify different contributions of the total force. This method to obtain FCIQMC forces eliminates previous restrictions and can be used with frozen core approximation and free selection of orbitals, making it promising for more efficient nuclear forces calculations. After some numerical checks of this procedure on the binding curve of N2 molecule, we use the FCIQMC energy and force to obtain the full-dimensional ground state PES of the water molecule via Gaussian processes regression. The new water FCIQMC PES can be used as the basis for H2O ground state nuclear dynamics, structure optimization, and rotation-vibrational spectrum calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call